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ABSTRACT

A highly stereoselective and efficient method for the synthesis of optically active homoallylamines was developed. Key features of the method
include (1) the utilization of naphthylethylamine as both an excellent chiral auxiliary and the amine source, (2) the 1,3-chiral induction of the
N-acyliminium ion with high stereoselectivity and high yield, and (3) facile auxiliary removal under mild conditions to liberate N-Cbz-protected
homoallylamines. In addition, the total synthesis of the proposed novel tripeptide containing a β-amino acid has been achieved by applying this
method.

Homoallylamines and acylated homoallylamines are
some of the important structural subunits of biologically
active compounds and are useful intermediates in a wide
range of syntheses of alkaloids and nitrogen-containing
heterocycles.1 Thus, the enantio- and diastereoselective
synthesis of homoallylamines has become one of themajor
goals in the fields of medicinal chemistry and organic
synthesis.Consequently, thedevelopment of anewmethod
for the synthesis of optically active homoallylamines has

been continuously attempted by organic and synthetic
chemists.1a,2

We have recently reported a new approach to the
synthesis of the N-acyliminium ion from N,O-acetal
TMS ether, which was conveniently prepared from
acylcarbamate.3 The N,O-acetal TMS ether proved to be
an excellent acyliminium ion precursor in terms of con-
venience of preparation, chemical stability, and functional
versatility in addition to the accessible structural diversity
of cyclic and acyclic N-acyliminium ions. More recently,
we have reported a novel asymmetric synthetic route
for β-amino acids using this methodology.3c Herein, we
describe an efficient and versatile method for the synthesis
of various homoallylamines through chiral auxiliary-
assisted diastereoselective allylation of N-acyliminium
ions3,4 prepared fromN,O-acetal TMS ether and the facile
removal of the naphthylethyl auxiliary (Figure 1).
As shown in Scheme 1, N,O-acetal TMS ethers were

prepared in high yield according to the established
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method.3 After extensive preliminary investigation of chir-
al auxiliaries, we selected 1-(1-naphthyl)ethylamine based
on (1) its ability to serve as an appropriate amine source,
(2) the excellent 1,3-chiral induction in the allylation ofN-
acyliminium ions, and (3) the facile auxiliary removal.
Thus, the commercially available chiral 1-(1-naphthyl)
ethylamine was initially acylated, followed by Cbz-protec-
tion to afford the protected amide 3a�h. The N,O-acetal
TMS ether 4a�h was successfully generated from the
corresponding amide 3a�h by DIBAL reduction and in
situ trapping of the resulting alkoxide with TMSOTf.
Fortunately, the N,O-acetal TMS ethers were successfully
prepared in high yield irrespective of the steric effects of the
substituents.5

We subsequently investigated the reaction conditions for
the diastereoselective allylation of the N-acyliminium ion
prepared from theN,O-acetal TMS ether 4a, as illustrated
in Table 1. We chose allylsilane as an allyl donor based on

the synthetic efficiency and the low hazard to the public.6

The chemical yields of the allylations of 5a were generally
good or excellent regardless of the Lewis acid, solvent or
temperature used. However, the diastereoselectivity was
quite sensitive to the reaction conditions. Reactions in
methylene chloride in the presence of BF3 3OEt2 provided
the best resultswith respect to bothdiastereoselectivity and
chemical yield (entries 1�6). Entries 7�10 revealed the
decrease in the diastereoselectivity with increasing reaction
temperature, whereas the stereochemical results were al-
most the same at temperatures less than �40 �C. We
carried out all allylation reactions with BF3 3OEt2 at
�78 �C, followed by slow warming to 0 �C slowly as a
standard procedure, although maintaining the reaction
temperature at �78 �C for 1 day resulted in the highest
diastereoselectivity (93:7).7

We then turned our attention to the removal of the 1-(1-

naphthyl)ethyl moiety. The crucial C�Nbond cleavage of

the allylation products under mild conditions was inten-

sively investigated. The N-Cbz-protected homoallylamine

1a was finally obtained from 5a in an excellent yield by

TFA treatment in CH2Cl2 at room temperature. To the

Figure 1. Strategy for the synthesis of optically active
homoallylamines.

Scheme 1. Preparation of N,O-Acetal TMS Ethers

Table 1. Effects of the Lewis Acid, Solvent and Temperature on
the Homoallylation of the N,O-Acetal TMS Ethera

entry Lewis acid solvent temp yield (%)b drc

1 BF3 3OEt2 CH2Cl2 �78 to 0 �Cd 95 92:8

2 SnCl4 CH2Cl2 �78 to 0 �Cd 75 87:13

3 TMSOTf CH2Cl2 �78 to 0 �Cd 51 92:8

4 BF3 3OEt2 PhCH3 �78 to 0 �Cd 93 86:14

5 BF3 3OEt2 CH3CN �78 to 0 �Cd 95 75:25

6 BF3 3OEt2 Et2O �78 to 0 �Cd 94 89:11

7 BF3 3OEt2 CH2Cl2 �78 �Ce 88 93:7

8 BF3 3OEt2 CH2Cl2 �40 �C 86 92:8

9 BF3 3OEt2 CH2Cl2 �23 �C 90 90:10

10 BF3 3OEt2 CH2Cl2 0 �C 80 78:22

aReactionswere performed at given conditions for 3 h and quenched
with a sufficient amount of triethylamine unless otherwise noted.
b Isolated yields. cDetermined using chiral HPLC (Daicel, OD-H) after
removal of the naphthylethyl moiety. (The racemate was prepared from
commercially available (()-1-(1-naphthyl)ethylamine). dReaction tem-
perature was slowly elevated during 3 h. eStirred for 1 day at a given
temperature and then quenched with triethylamine.

(5) The spectral data (1H NMR, 13C NMR) were quite complicated
due to the rotameric and/or diastereomeric nature of the N,O-acetal
TMS ethers. Accordingly, the diastereomeric ratios were not determined
at this stage, and theN,O-acetal TMS ethers were used for the next step
without further purification.
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best of our knowledge, no information on the cleavage of
the carbon�heteroatom at the R position of the naphthyl
moiety has been published, although carbon�heteroatom
cleavages at the benzylic position in various strongly acidic
media are well known.8 The removal of naphthylalkyl
moieties has been infeasible9 despite their excellent stereo-
inductions, primarily because of the limited functional
group tolerances under harsh auxiliary cleavage con-
ditions.10 In the course of our mechanistic studies on
naphthyl cleavage, we were able to easily isolate trifluoro-
acetate 6 as the sole side product, which was shown to
be a racemate.11 Consequently, the removal of the 1-(1-
naphthyl)ethyl moiety could be mechanistically under-
stood as an SN1-type reaction (Scheme 2).

We also turned our attention to the scope of this
established method. The stereoselective allylation of a
variety of N,O-acetal TMS ethers under optimized condi-
tions proceeded smoothly to afford the corresponding N-
Cbz-protected homoallylamines (Table 2). Generally, an
increase in the diastereoselectivity upon introduction of a
longer alkyl substituent was observed (entries 1�3). Olefin
and alkyne functional groups were well tolerated (entries
4�6), and evenphenylethyl substituents survivedunder the
established conditions (entry 7). The presence of branching
with aliphatic substituents resulted in slight decrease in
both yield and diastereoselectivity (entry 8).
To confirm the absolute configuration of the newly

generated stereocenter, we converted homoallylamine
1a into the known β-amino acid 7. Dihydroxylation of
1a under Upjohn conditions12a and subsequent 1,2-diol
cleavage with sodium periodate followed by Pinnick
oxidation12b gave the desired β-amino acid 7. The absolute
configuration of the new stereocenter was confirmed as (S)

based on the reported results.13 A plausible transition state
for the stereoselective allylation is suggested based on the
stereochemical outcome (Figure 2). The Felkin�Ahn
model, which is addressed in the 1,3-chiral induction of
imine species,14,15 was followed in this system.

Scheme 2. SN1-typeRemoval of the 1-(1-Naphthyl)ethylMoiety

Table 2. Allylation of N,O-Acetal TMS Ethers

entry R, 4

yield %a

on 5

yield %b

on 1 erc

1 CH2CH3, 4a 95 99 92:8

2 CH2CH2CH3, 4b 90 95 92:8

3 CH2CH2CH2CH3, 4c 90 90 96:4

4 CH2CH2CH2CH2dCH2, 4d 86 90 98:2

5 CH2CH2CH2CtCH, 4e 80 95 92:8

6 CH2CH2CH2CH2CtCH, 4f 88 92 96:4

7 CH2CH2Ph, 4g 89 90 95:5

8 CH2 CH2CH2c-hex
d, 4h 82 95 90:10

a Isolated yield of the first step. b Isolated yield of the second step.
cDetermined with chiral HPLC (Daicel, OD-H). dCyclohexyl.

Figure 2. Confirmation of the absolute stereochemistry.
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Having established a synthetic method for homoallyl-
amines, we undertook the total synthesis of a marine
natural product to validate the applicability of our meth-
od. The novel tripeptide 12 with the proposed structure
was isolated from a bacterium identified as Pseudomonas
or Alteromonas (DF-1).16 This marine natural product,
which consists of a β-aminopimelic acid was reported first
from a natural source. Our curiosity about the biological
role of the novel tripeptide based on the structural simi-
larity of its fragments with R-aminopimelic acid and 1,6-
diaminopimelic acid17 and the desire to elucidate the
undetermined chiral center led us to attempt the total
synthesis of this compound.
Shown in Scheme 3, the concise synthesis commenced

with the preparation of homoallylamine 5e on a gram
scale, followed by a sequence of oxidative olefin cleavage
and coupling of phenylalanine.18 Removal of the phenyl-
ethyl auxiliary with the established procedure and global
deprotection by hydrogenolysis provided the desired novel
tripeptide, which was further purified using ion-exchange
resin and preparative HPLC. Epimerization was not ob-
served after the removal of the 1-naphthylethyl moiety.
We have successfully synthesized the two diastereomeric

tripeptides that have been proposed.19 However, a com-
parison of the spectral datawith the reported data revealed
that the structure of 12 is not the same as that of the natural
tripeptide20 (see Supporting Information, this synthesis
successfully showcases the synthetic utility of our asym-
metric amidoalkylation protocol).
In conclusion, we have developed a reliable and stereo-

selective method for the synthesis of various homoallyl-
amines. Allylsilane turned out to be an adequate allyl donor
and 1-(1-naphthyl)ethylamine proved to be both an ex-
cellent chiral auxiliary and an excellent amine source. We

also established an efficient and mild procedure for the
facile removal of the 1-(1-naphthyl)ethyl moiety, which
can bewidely utilized in the asymmetric synthesis of amino
acids and alkaloids. Our method was also successfully
applied in the total synthesis of the proposed structure of
a novel tripeptide containing β-amino acid.
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Scheme 3. Total Synthesis of Novel Tripeptide
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